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Abstraci We consider a hierarchy of the nahual-lype Hamiltonian systems of n degrees of 
freedom with polynomial potentials separable in general ellipsoidal and ped paraboloidal 
coordinates. We give a lax representation m t e m  of 2 x 2 matrices for the whole hierashy 
and consrmct the assodated linear r-matrix algebra with the r-muix dependent on the dynamical 
variables. A Yang-Baxter equation of dyn.?mical type is proposed. Using the method of variable 
separation, we ?"vi& the integration of the systems in classical mechanics consrmcr;np the 
separation equations and, hence, the explicit form of adion vatiables. The qua@ization problem 
is discussed with the help of the separation variables. 

1. Introduction 

The method of separation of variables in the Hamilton-Jacobi equation, 
aw 

H ( P I ,  .. . . pn.xi,.  . ..xd = E (1.1) 

is one of the most powerful methods for the consauction of action for the Liouville 
integrable systems of classical mechanics [31. We consider below systems of the natural 
form described by the Hamiltonian 

pi = i = 1, .. .n 

1 "  
H = -cp:+ V(X,,  , . . ,X") p i .  xi E B. 

2 i=l  

The separation of variables means the solution of partial differential equation (1.1) for the 
action function W in the following additive form: 

n 

w = wi(!4; H,, . . . , H") H, = H 
i=I 

where pi will be called separation variables. Note that the partial functions W, depend 
only on their separation variables pt. which define a new set of variables instead of the 
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old ones (xk}, and on the set of constants of motion, or integrals of motion, (H,}. In 
the following we shall speak about coordinate separation where the separation variables 
[ p i ]  are functions of the coordinates { x k }  only. (The general change of variables may also 
include the corresponding momenta {pk}.) 

For a free paaicle (V = 0). the complete classification of all orthogonal coordinate 
systems in which the Hamilton-Jacobi equation (1.1) admits the separation of variables 
is known: these are generalized ndimensional ellipsoidal and paraboloidal coordinates 
[S, 91 (see also the references therein). It is also known that the Hamiltonian systems (1.2) 
admitting an orthogonal coordinate separation with V # 0 are separated only in the same 
coordinate systems. 

The modem approach to finite-dimensional integrable systems uses the language of the 
representations of r-matrix algebras [IO, 15, 16, 171. The classical method of separation of 
variables can be formulated within thii langwge dealing with the representations of linear 
and quadratic r-matrix algebras [ I l ,  12, 16, IS]. For the 2 x 2 L-operators, the recipe is 
to consider the zeros of one of the off-diagonal elements as the separation vm.ables (see 
also a generalization of this approach to higher dimensions of L-matrix [18]). For V = 0 
in [ll, 121, 2 x 2 L-operators were given, satisfying the standard linear r-matrix algebra 
[IO, 151, 

(LI(u) ,  M u ) )  = [4 - U), & ( U )  +Lz(u)I r b )  = - [ ] (1.3) 

and the link with the separation of variables method was elucidated. In (1.3) we use 
the familiar notations for the tensor products of L(u) and 2 x 2 identity matrix I, 
Ll(I4) = L(u) @I, Lz(u) = I @ L(u). 

In the present paper we conshuct 2 x 2 L-operators for systems (1.2) being separated 
in the generalized ellipsoidal and paraboloidal coordinates. In the case when the degree N 
of the potential V is equal to 1 or 2, the associated linear r-mahix algebra appears to be 
the standard one (1.3). In the case N > 2, the algebra is of the form 

with s(u, U) = a,+. U) U- @U-, where U- = UI - i q  and 0;. are the Pauli matrices, and 
&U, U) is the function which equals 1 for N = 3 and depends on the dynamical variables 

The study of completely integrable systems admitting a classical r-matrix Poisson 
structure with the r-matrix dependent on dynamical variables has attracted some attention 
[5, 6, 131. It is remarkable that the celebrated Calogerc-Moser system, whose complete 
integrability was demonstrated a number of years ago (cf [14]), has been found only recently 
to possess a classical r-mahix of dynamical type [4]. 

Below we briefly recap how to get the 2 x 2 L-operators for the separable systems (1.2) 
without the potential V [Il, 121. Let us consider a direct sum of the Lie algebras, each of 
rank 1: A = sok(2. 1). Generators sk E R3, k = 1,. . . , n of the A algebra satisfy the 
Poisson brackets 
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1 0 0 0  
1 0 0 1 0  
U 0 1 0 0  

0 0 0 1  

{LI(u), Lz(u)} = M u  - U). LI(u) + &(U)] + M u ,  U). Ll(u)  - L~(u)l  (1.4) 

IY, pd;==, for N > 3. 

(1.5) [&s i }  = 6 k m ~ i j ! g l f s k  1 g =diag(l,-1,-I). 

s z = ( s i , s i ) = ( s i )  1 2  - - ( S i )  2 2  -(si) 3 2  

(Si. Sk) =si's; -si 3, -s i  s,. 

Throughout the paper, we imply that the g metric calculates the norm and scalar product 
of the vectors si: 

I -  

2 2  3 3  



Linear r-matrix algebra for classical separable systems 569 

Let us fix the values of the Casimir elements of the A algebra: si" = c;, then variables 
si lie on the direct product of n hyperboloids in R3. Let ci E R and choose the upper 
sheets of these double-sheeted hyperboloids. Denote the obtained manifold as K,'. We will 
denote by hyperbolic Gaudin magnet [7] integrable Hamiltonian system on K,' given by n 
integrals of motion Hi which are in involution with respect to the bracket (1.5), 

To be more exact. one has to call this model an n-site so(Z,l)-XXX Gaudin magnet. Note 
that all the 4 are quadratic functions on generators of the A algebra and the following 
equalities are valid 

Here a new variable J = CyeI si is introduced which is the total sum of the hyperbolic 
momenta si. The components of the vector J obey so(2,l) Lie algebra with respect to the 
bracket (1.5) and are in involution with all the Hi. The complete set of involutive integrals 
of motion is provided by the following choice: Hi, J z  and, for example, (J3)2 .  Integrals 
(1.6) are generated by the 2 x 2 L-operator (as well as the additional integrals J )  

satisfying the standard linear r-matrix algebra (1.3). Let ci = 0, i = 1, . . . , n, which turns 
the hyperboloids 8f = c: into cones. The manifold K,' admits in this case the following 
parameterization (pi,xi E R): 

where the variables pi and xi are canonically conjugated. Using the isomorphism (1.8). 
the complete classification of the separable orthogonal coordinate systems was provided in 
[ll, 121 by means of the corresponding L-operators satisfying the standard linear r-matrix 
algebra (1.3). The starting point for our investigation are these L-operators written for the 
cases of free motion on a sphere and in the Euclidean space. 

The paper is organized as follows. In section 2 we describe the classical Poisson 
structure associated with the hierarchy of natural-type Hamiltonians separable in the three 
coordinate systems: the spherical (for motion on a sphere), and general ellipsoidal and 
paraboloidal (for n-dimensional Euclidean motion) coordinates. This structure is given 
in terms of the linear r-matrix formalism, providing a new example of the dynamical 
dependence of the r-matrices. We also introduce an analogue of the Yang-Baxter equation 
for our dynamical r-matrices. In section 3 we derive the Lax representation for all the 
hierarchy, as a consequence of the r-matrix representation given in section 2. Section 
3 deals also with the aspect of variable separation. The question of quantization of the 
considered systems is briefly discussed. 



570 J C Eilbeck et nl 

2. Classical Poisson structure 

Let us consider the following ansae for the 2 x 2 L-operator 

where 
x: 

B ( u ) = E - C - -  
U - ei E = 0, 1, or 4(u - xn+l + B )  

i=1 

Here the xi .  p j  are canonically conjugated variables ( (p i ,  x j )  = & j ) ,  vk are indeterminate 
functions of the x-variables; B and e! are non-coincident real constants. Note. that dot over 
E means differentiation by time, and for natural Hamiltonian (1.2) one has &+I = pn+l. 

Theorem 1. Let the curve det(L(u) - A I )  = 0 for the L-operator (2.1) have the form 
Hi 

A”- A(u)’ - B(u)cN(u) = A’ + E  uN - - = o for E = 0, 1 (2.5) 
i=l U - ei 

“ H i  A’ - A@)’ - B(u)CN(U) = A’ + 16uN-’(u + B)’ + 8H - - = 0 
U - ei i=l 

for E = 4(u - xn+l + B )  (2.6) 
and Hi, N in the case of (2.6). Then the following with some integrals of motion 

recurrence relations for v k  are valid 

for E = 4(u - X,+I + E ) .  
The explicit formulae. for the integrals Hi have the form 

n ’  M; N 
x i = - c - -  + E  ’ p! +xi’ V k e y  for E = 0.1 

k d  ei - ej j=1 

for E = 4(u - xn+l + B )  
where Mij = xipj - xjp i .  The Hamiltonians .Tare given by 

for E = 0.1 

(2.10) 

(2.11) 
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The proof is straightforward and based on direct computations. 

differential form. In particular, for the paraboloidal coordinates we have 
We remark that the above recurrence formulae for the potentials can be written in 

i = 1, .. . , n avN 1 avN-l 8VN-l - = -- ~j -A i -  
axi 2 ax,+] axi (2.13) 

(2.14) 

Note that the case of E = 0 is connected with the ellipsoidal coordinates on a sphere 
and two other cases E = 1 and 4(u - x.+1 + B )  describe the ellipsoidal and paraboloidal 
coordinates in the Euclidean space, respectively (see section 3.2 and [ll, 121 for more 
detail). Recall that we study now the motion of a particle on these manifolds under the 
external field with the potential V that could be any linear combination of the homogeneous 
ones v k .  

Now we are ready to describe the linear algebra for the Laperator (2.1). 

Theorem 2. Let tbe L-matrix be of the form (2.1) and satisfy the conditions of theorem 1. 
The following algebra is then valid for its entries: 

(2.15) 
(2.16) 

(2.17) 

where the function aN(u,  U) has the form 

N k 

QN(u)  = Qk U k  e k  = v m  v k - m .  
M m=O 

The proof is based on the recurrence relations (2.7). (2.8). 
We remark that for the paraboloidal coordinates the foilowing formula is valid 

therefore in this case we have 

(2.20) 

(2.21) 

(2.22) 
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using 4 x 4 notations Ll(u)  = L(u) @ I ,  Lz(u) = I @ L(u); the matrices r(u - U )  and 
sN(u, U) are given by 

J C Eilbeck et a1 

(2.24) 

The algebra (2.15X2.19) or (2.23X2.24) contains all the information about the system 
under consideration. From it there follows the involutivity of the integrals of motion. 
Indeed, the determinant d(u) E detL(u) is the generating function for the integrals of 
motion and it is simply to show that 

I W ) ,  d(v)} = 0. (2.25) 

In particular, the integrals Hi (2.9), (2.10) are the residues of the function d(u): 

Hi = d(u) i = 1 , .  . . , n. 
The Hamiltonians H (2.11), (2.12) appear to be a residue at infinity. Let us rewite the 
relation (2.23) in the form 

ILi(u), h ( u ) }  = 1d1z(u7 U). Li(u)l - [dzl@, v)Lz(u)I (2.26) 

with di, = rij + sij, dji = sij - rij at i c j. 

Theorem 3. The following equations (the dynamical Yang-Baxter equations) are valid for 
the algebra (2.26) 

[diz(u, U), w)l+ [diz(&, U), du@, w)l+ [d3z(W. U), &(U, ~ ) l  
+Wz(u).dn(u, w)) - IL3(w), diz(u, U)) 
+IC(% U, W), Lz(U) - L3(W)1 = 0 (2.27) 

where c(u, U, w )  is some matrix dependent on dynamical variables. The other two equations 
are obtained from (2.27) by cyclic permutations. 

Proof. Let us write the Jacobi identity as 

ILl(u), ILz(U), L3(w))I+ (L3(w). ILl(U), LZ(U)}I + ILz(V), {L3(w), L I ( ~ ) } I =  0 (2.28) 

w i t h L ~ ( u ) = L ( u ) @ I @ Z , L z ( u ) = Z ~ L ( u ) @ Z , L 3 ( w ) =  I @ Z @ L ( w ) .  Theextended 
form of (2.28) reads [13] 

[LI(u), [diz(u, u).dn(u, w)l+ Idiz(u, v) ,du(u,  w)l+ [d3z(w9 U),&(U, w)11 
+[Ll(u), ILZ(V), d13(U.,,w)} - IL3(w), diz(u, 
+ cyclic permutations = 0. (2.29) 

Further on we restrict ourselves to proving (2.27) only in the paraboloidal case (other cases 
can be handled in a similar way). To complete the derivation of (2.27), we shall prove the 
folIowing equality for a11 the members of the hierarchy 

ILz(u), S13(& 0 - W3(wh s12(u, 4 1  
= 2bN(Uv w)[PUs SI3 + s l Z l  - 1s. Lz(V)  - Ldw)]  (2.30) abN(U3 U, w) 
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(with cyclic permutations). In (2.30) the matrix s = U- @ U- @ U- and 

In the extended form (2.30) can be rewritten as 

(2.31) 

(2.32) 

(2.33) 

(2.35) 

The equality (2.32) is trivial and equation (2.33) is derived by differentiating (2.18). 
Equation (2.34) follows from the definition of Q(u)  and (2.33). To prove (2.35) we write 
it using the explicit form of CN(U)  and A(u)  as 

(2.36) 

Using the identity 

w k  - uk w k  - ,,k wk+l - Uk+l wk+l - ,,k+l 
u--u-= - 

w - U  w - U~ w-U w - U  

and the recurrence relation (2.13), we find that the equality (2.36) is valid. Therefore the 
equations (2.27) follow with the matrix c(u, U, w )  = a,¶@, U, w)/ax,,+l e- @U- @U-.  The 
proof is completed. 

We remark that the validity of equations (2.27) with an arbitrary matrix c(u, U, w )  
is sufficient for the validity of (2.28) and, therefore, (2.27) can be interpreted as some 
dynamical classical Yang-Baxter equation, i.e. the associativity condition for the linear 
r-matrix algebra. These equations have an extra term [c,  Li - Lj] in comparison with the 
extended Yang-Baxter equations in [13]. 

We would like to emphasize that all statements of this section can be generalized to the 
following form of the potential term VN(U)  in (2.4): 

N 

vMN(u)  = fi v ~ u ~ - ~  f k E C .  
k-.U 

This form corresponds to the linear combinations of homogeneous terms Vk as potential V 
and also includes the negative degrees to separable potential (see the end of section 3.1 for 
more detail). 
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3. Consequences of the r-matrix c presentation 

3.1. Lax representation 

Following the article [SI we can consider the Poisson structure (2.26) for the powers of the 
L-operator 

((LI(u))', (Lz(v)) 1 - [ 12 ( .U), L i ( ~ ) l  - &')(U. u)Lz(v)l 

J C Eilbeck et a1 

(3.1) 1 - d(k.1) U 

with 

As an immediate consequence of (3.1), (3.2) we obtain that the conserved quantities H and 
Hi are. io involution. Indeed, we have 

(3.3) 

and after applying the equality (3.1) at k = E = 2 to this equation and taking the trace, we 
obtain the desired involutivity. Further, let us define differentiation by time as 

IWLI (U))', 'WLZ(V))~I = ' W ( L I ( U ) ) ~ ,  ( M V ) ) ~ ~  

d 
dt L(u) = - U u )  = TrdL~(u), (Lz(u))') (3.4) 

where the brace is taken over the second space. Applying the equation (3.1) at k = 1, I = 2 
to (3.4), we obtain the Lax representation in the form i ( u )  = [M(u) .  L(u)] with the mahix 
M ( u )  given by 

M(u) = 2 Iim Trz Ll(v)(r(u - U) - S(U, U)). (3.5) 

After the calculation in which we take into account the asymptotic behaviour of the L- 
operator (2.1), we obtain the following explicit Lax representation: 

"+U 

i ( u )  = IM(u),  L(U)l 

where QN(u) was defined by equations (2.20). Lax representations for the higher flows can 
be obtained in a similar way. 

As follows from (3.6). 

A(u) = -Lk(u) 2 CN(U) = -$B(u)  - B(u)QN(u) 
so our L-matrix can be given in the form 

(3.7) 

The equations of motion, which follow from (3.6) with the L-matrix from (3.7). have the 
form 

al[f?Nl ' B ( U )  = o  (3.8) 
where 
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with curly brackets standing for the anticommutator. Operator Bl is the Hamiltonian 
operator of the first Hamiltonian structure for the coupled KdV equation 11, 21. Equation 
(3.8), considered as one for the unknown function B(u), was solved in the three cases (2.2), 

xi" 
B ( U ) = C - x -  E = 0.1, 4(u - + B )  

U - ei 
in [l] and [2]. General solution of this equation as one for the Q(u) has the form 

where the coefficients Qk are defined from the generating function &U) 
+m 

&U) F Z ( U )  = & I l k .  (3.10) 
k = - m  

Recall that we can Write the element CN(U)  of the L-matrix (2.1) in two differeut forms 
(using the Q or V functions) 

where function V ( U )  = C % o v k ~ + k  was defined in (2.4). The general form of the 
function V(u) is 

where coefficients v k  are defined by the generating function ?(U) 

(3.11) 

(3.12) 

Potentials v k  are connected with coefficients Q k .  Indeed, using generating functions (3.10) 
and (3.12), we have 

and, therefore, Q k  = E&& v k - j .  n u s  we have recovered the formula (2.20) for the 
s-matrix. 

3.2. Separation of variables 

Let K denote the number of degrees of freedom: K = n - 1 for ellipsoidal coordinates on 
a sphere, K = n for ellipsoidal coordinates in the Eucludean space, and K = n + 1 for 
paraboloidal coordinates in the Euclidean space. The separation of variables (cf 112, 171) is 
understood in the context of the given hierarchy of Hamiltonian systems as the construction 
of K pairs of canonical variables xi, .ui, i = 1, . . . , K, 

( p j ,  xj ,  H~ (1) , . . . , HF)) = o j = 1.2, . . . , K 

(3.13) 

(3.14) 
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where H i )  are the integrals of motion in involution. Equations (3.14) are the separation 
equah’ons. The integrable systems considered admit the Lax representation in the form of 
2 x 2 maaices (3.6) and we will introduce the separation variables xi, pi as 

B ( p i ) = O  y = A ( p i )  i = l ,  ..., K .  (3.15) 

Below we write explicitly these formulae for our systems. The set of zeros p j ,  j = 1, . . . , K 
of the function B(u) defines the spherical (E = 0), general ellipsoidal (E  = 1) and general 
paraboloidal (E  = 4(u - x,+l + B))  coordinates given by the formulae [8, 9, 121 

J C Eilbeck er a1 

Theorem 4. The coordinates L L ~ ,  rri given by (3.15) are canonically conjugated. 

Proof. Let us list the commutation relations between B(u)  and A@),  

[Nu), B(u)l = [A(u), A(u)I = 0 (3.19) 

( A @ ) ,  = - (B(u)  - B(u)) .  (3.20) 

The equalities {pi, pj] = 0 follow from (3.19). To derive the quality [pi ,  x j ]  = -S i j  we 
substitute U = pj in (3.20) and obtain 

2 
U - U  

(3.21) 
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3.3. Q m ' m ' o n  

The separation of variables has a direct quantum counterpart [I 1, 191. To pass to quantum 
mechanics we change the variables ni, pi to operators and the Poisson brackets (3.13) to 
the commutators 

I&. pd = Inj. n k l  = 0 Inj, pp1 = -is,. (3.22) 

Suppose that the common spectrum of pi is simple and the momenta ni are realized as the 
derivatives zj = -ia/apj. The separation equations (3.21) become the operator equations, 
where the non-commuting operators are assumed to be ordered precisely in the order as 
those listed in (3.14), that is, ni, pi, H t ) ,  . . . , HAK). Let Y(p1.. .. , p ~ )  be a common 
eigenfunction of the quantum integrals of motion: 

(3.23) (9 HN~Y = Ai*, i = 1 ,..., K. 
Then the operator separation equations lead to the set of differential equations 

@j(-i-, p j ,  HN . . . , HN )Y(pl,.  . . , p ~ )  = 0 

which allows the separation of variables 

(3.24) a (1) ( K )  j = 1 , .  . . , K 
apj 

K 

Y(IL.~ . . . . , p L K ) = n ~ j ( p j ) .  (3.25) 
j=1 

The original multidimensional spectral problem is therefore reduced to the set of one- 
dimensional multiparametric spectral problems which have the following form in the context 
of the problems under consideration: 

(3.26) 

for E = 4(u - x,+l + B )  (3.27) 

with the spectral parameters A I , .  . . , A..+,. The problems (3.26), (3.27) must be solved on 
the different intervals ('permitted zones') for the variable U. 

4. Conclusion 

We should emphasise that a large family of integrable systems has been studied in the 
present paper. As partial cases it includes, for example, the classical Coulomb problem, the 
oscillator and many others that can be separated in general orthogonal coordinate systems. 
In other terms we can claim that every coordinately separable Hamiltonian of natural type, 
with the separation variables lying on the hyperelliptic curve, is in our family. We have to 
mention also a recent preprint [ZO] where it was shown that the elliptic Caloger+Moser 
problem provides one more example of the integrable system of natural type described 
through L-operator satisfying the algebra (1.4) with a slightly more general dynamical 
Yang-Baxter equation (2.27). But it is not coordinately separable any more. 

We remark also that all systems considered in the paper yield an algebra which has 
general properties that are independent of the type of the system. Therefore, it would be 
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interesting to consider its Lie-algebraic origin within the general approach to the classical 
r-matrices [16]. 

There exists an interesting link of the algebra shciied here with the restricted flow 
formalism for the stationary flows of the coupled KdV (cKdV) equations [l]. The Lax pairs 
which have been derived in the paper from the algebraic point of View were recently found 
in [Z] by considering the bi-Hamiltonian structure of cKdV. 

It seems to be interesting to examine the same questions for the generalized hierarchy 
of Gelfand-Dickey differential operators for which the corresponding L-operators have to 
be the n x R matrices. 

J C Eilbeck et a1 
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